CSL862 Major Exam
Advanced Topics in Operating Systems
Sem 1 2017-18
21 November 2017
Answer all 5 questions Max. Marks: 52

1. Efficient Network Reachability Analysis Using a Succinct Control Plane
Representation

a. Routing protocols may involve several intermediate configurations which may be
erroneous (e.g., node A may not be reachable from node B). Does ERA identify erroneous
intermediate states? Or is it able to identify only whether the configuration in the
steady-state may be erroneous? Briefly explain your answer. [3]

b. In ERA, a route is encoded using a 128-bit vector. The paper discusses ERA’s working
using a 4-bit encoding of a route x3 x2 x1 x0 (see Section 5.2, an illustrative example). The
4-bit encoding helps simplify the discussion. Later in the same section, the paper says that
Vout = <some predicate over x0, x1, x2, x3>. What are Vin and Vout? What does the
predicate over x0, x1, ... mean, and how does it help ERA’s analysis? [4]

2. EbbRT

a. Whatis a library operating system? How is it different from a general-purpose
operating system? What are its advantages over a general-purpose OS? [3]

b. Why is a library OS more relevant today than it was in 1980s-90s? [1]

c. Consider the event handling loop discussed in Section 4.2. The authors explain how the
event handling framework can allow a network driver to implement adaptive polling. What is
the need for adaptive polling in a network card? [1] What is the point that the authors are
trying to make through this discussion? [1]

d. “The fast-path cost of an Ebb invocation is one predictable conditional branch and one
unconditional branch more than a normal C++ object dereference.”

Explain this statement. Why is the fast-path cost of an Ebb invocation similar to the cost of
a normal C++ object dereference? [1.5] What is the likely reason for an additional
conditional branch and an additional unconditional branch? [1.5]

e. “Because event-driven programming splits one logical flow of control across
multiple stacks, exceptions must be handled at every event boundary. This puts
the burden on the developer to catch exceptions at additional points in the code
and either handle them or forward them to an error handling callback.”

Briefly explain this statement [3]. How do monadic futures address this problem

[2].

3. Tensorflow

a. How is TensorFlow different from previous work on parameter servers? Briefly
describe two major differences. [3]

b. Why are batch dataflow systems (such as MapReduce and DryadLINQ) unsuitable for
machine learning applications? In other words, how is TensorFlow more suited to such
applications? Explain briefly. [2]

c. How does TensorFlow currently support the execution of the same operation on multiple
types of devices, e.g., CPU, GPU, TPU? [1]

d. Explain the following program, by explaining each block of statements (1, 2, and 3)

briefly. [4]
1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_STIZE, 784]) # Placeholder for input.
y = Ef.placeholder (£t£.float32, [BATCH STZE, 10]) # Placeholder for labels.
W_1 = tf.variable(tf.random_uniform([784, 1001)) # 784x100 weight matrix.
b 1 = tf.variable(tf.zeros([100])) # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2) # Output of hidden layer.
W 2 = tf.variable(tf.random_uniform([100, 10])) # 100x10 weight matrix.
b 2 = tf.variable(tf.zeros([10])) # 10-element bias vector.
layer_2 = tf.matmul (layer_1, W_2) + b_2 # Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax cross_entropy with_ logits(layer 2, vy)
train_op = tf.train.AdagradOptimizer (0.01) .minimize (loss)

3. Execute the graph on batches of input data.
with tf.Session() as sess: # Connect to the TF runtime.
sess.run(tf.initialize all wvariables/()) # Randomly initialize weights.
for step in range (NUM_STEPS): # Train iteratively for NUM_STEPS.
x_data, y_data = # Load one batch of input data.
#

sess.run(train_op, {x: x _data, y: y_data}l) Perform one training step.

Figure 1: Animage classifier written using TensorFlow’s Python APIL This program is a simple solution to the MNIST
digit classification problem [48]), with 784-pixel images and 10 output classes.

4. SCONE: Secure containers with Intel SGX

a. Discuss a use-case of Intel SGX to explain why it is useful? [3]

b. List one advantage of containers over processes? [1] List one advantage of containers
over VMs? [1]

c. Explain how user-level thread in combination with asynchronous system calls helps
SCONE design, starting with what problem they solve and then how they solve it. [3]

5. Netbricks
a. What is network function virtualization, and why is it relevant? [2]

b. What is the key idea in the Netbricks paper? [1] What are the primary challenges with
this approach? [2]

c. For packet processing, each packet is represented as (i) a stack of headers; (ii) the
payload; and (iii) a reference to any per-packet metadata.

Explain each of these. Why stack? [3]

d. Explain the ‘GroupBy’ operator. [1]

e. Why does NetBricks perform so much better (e.g., 7x faster than when containers are
connected using SoftNIC) than using one container per network-function? [2]

f. How does NetBricks ensure isolation across two different network functions? [2]

